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Abstract

Many syndromes traditionally viewed as individual diseases are heterogeneous in molecular pathogenesis and treatment respon-
siveness. This often leads to the conduct of large clinical trials to identify small average treatment benefits for heterogeneous groups
of patients. Drugs that demonstrate effectiveness in such trials may subsequently be used broadly, resulting in ineffective treatment
of many patients. New genomic and proteomic technologies provide powerful tools for the selection of patients likely to benefit
from a therapeutic without unacceptable adverse events. In spite of the large literature on developing predictive biomarkers, there
is considerable confusion about the development and validation of biomarker-based diagnostic classifiers for treatment selection.
In this paper we attempt to clarify some of these issues and to provide guidance on the design of clinical trials for evaluating the
clinical utility and robustness of pharmacogenomic classifiers.
Published by Elsevier B.V
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1. Introduction

Physicians need improved tools for selecting treatments for individual patients. For example, many cancer treatments
benefit only a minority of the patients to whom they are administered (e.g. Bast and Hortobagyi, 2004; Johnson and
Janne, 2005). Being able to predict which patients are most likely to benefit would not only save patients from
unnecessary toxicity and inconvenience, but might facilitate their receiving drugs that are more likely to help them. In
addition, the current over-treatment of patients results in major expense for individuals and society, an expense which
may not be indefinitely sustainable.

Much of the discussion about disease biomarkers is in the context of markers which measure some aspect of disease
status, extent, or activity. Such biomarkers are often proposed for use in early detection of disease or as a surrogate
endpoint for evaluating prevention or therapeutic interventions. The validation of such biomarkers is difficult for a
variety of reasons, but particularly because the molecular pathogenesis of many diseases is incompletely understood
and hence it is not possible to establish the biological relevance of a measure of disease status.

A pharmacogenomic biomarker is any measurable quantity that can be used to select treatment; for example, the
result of an immunohistochemical assay for a single protein, the abundance of a protein in serum, the abundance of
messenger ribonucleic acid (mRNA) transcripts for a gene in a sample of disease tissue or the presence/absence status
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of a specified germline polymorphism or tumor mutation. A pharmacogenomic classifier is a mathematical function
that translates the biomarker values to a set of prognostic categories. These categories generally correspond to levels of
predicted clinical outcome. With the advent of gene expression profiling, it is increasingly common to define composite
pharmacogenomic classifiers based on the levels of expression of dozens of genes. For a fully specified classifier,
however, all of the parameters and cut-points are specified for determining how to weight the different components and
how to map the multivariate data into a defined set of categories. A completely defined classifier can be used to select
patients and stratify patients for therapy in clinical trials that enable the clinical value of the classifier to be evaluated.
Specifying only the genes involved does not enable one to structure prospective clinical validation experiments in which
patients are assigned or stratified in prospectively well-defined ways.

In this paper we will address some key issues in the development and validation of pharmacogenomic classifiers.

2. Developmental and validation studies

It is important to distinguish the studies which develop pharmacogenomic classifiers from those which evaluate the
clinical utility of such classifiers. The vast majority of published prognostic marker studies are developmental and are
not adequate for establishing the clinical utility and robustness of a classifier (Simon andAltman, 1994). Developmental
studies are often based on a convenience sample of patients for whom tissue is available but who are heterogeneous with
regard to treatment and stage. The studies are generally performed in an exploratory manner with no specified eligibility
criteria, no primary endpoint or hypotheses and no defined analysis plan. The analysis often includes numerous analyses
of different endpoints and patient subsets. Often there are multiple candidate biomarkers to evaluate, multiple ways
of measuring and combining the candidate biomarkers. Such an informal approach is appropriate in a developmental
study so long as one recognizes that the same study cannot be used to evaluate the clinical value of the resulting
biomarkers or classifiers. The developmental study is exploratory and directed to hypothesis formation. The purpose of
developmental studies should be to develop completely specified classifiers and completely specified hypotheses that
can be tested in subsequent validation studies.

3. Development of multi-component classifiers

Four main components to developing a classifier are: (i) feature selection; (ii) selecting a prediction model; (iii)
fitting the prediction model to training data; and (iv) estimating the prediction error that can be expected in future use
of the model with independent data.

3.1. Feature selection

Feature selection is often important in developing an accurate classifier. It is well known from the theory of linear
regression that including too many “noise variables” in the predictor reduces the accuracy of prediction.A noise variable
is a variable that is not related to the thing being predicted. For microarray studies the number of noise variables may
be orders of magnitude greater than the number of informative variables.

The most commonly used approach to feature selection is to identify the genes that are differentially expressed
among the classes when considered individually. For example, if there are two classes, one can compute a t-test or a
Mann–Whitney test for each gene. The log-ratios or log-intensity measurements are generally used as the basis of the
statistical significance tests. The genes that are differentially expressed at a specified significance level are selected for
inclusion in the class predictor. The stringency of the significance level controls the number of genes that are included in
the model. If one wants a class predictor based on a small number of genes, the threshold significance level is made very
small. Some statisticians fail to distinguish between “class comparison” problems, where the objective is to identify
differentially expressed genes, and “class prediction” problems, where the objective is to do accurate prediction. Class
comparison analyses are often appropriate when the objective is understanding biological mechanisms; e.g. what genes
get expressed or repressed during wound healing of the kidney. Class prediction analyses are often appropriate for
medical problems when the objective is predicting response to a specific treatment. Criteria such as false discovery
rate are relevant for class comparison problems because it is useful to know what proportion of the genes reported as
differentially expressed among the conditions represent false positives. For class prediction problems, however, the
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relevant criteria are prediction accuracy. The parameters used for selecting genes to be included in the predictor should
merely be viewed as tuning parameters, even if they have the form of nominal significance level thresholds.

A priori it is not clear what degree of stringency is optimal for feature selection. Dudoit and Fridlyand (2003)
recommended that the number of genes selected be in the range of 10–100 for most studies. Previous experience
with CART classification indicated that being overly stringent and thereby excluding important variables can be more
serious than being inadequately stringent and including some noise variables (Breiman et al., 1984). If there are only
a few important variables and they are so differentially expressed that they stand out from among the thousands of
noise variables, then high stringency can lead to accurate classification. More often, however, there are a larger number
of differentially expressed genes but they do not stand out from among the thousands of noise genes. In this case, a
moderate level of stringency may lead to best performance. The parameter controlling stringency of feature selection can
be optimized. It is important to recognize, however, that if the selection of the stringency parameter is data dependent,
then it must be regarded as part of the model development algorithm for purposes of computing cross-validated estimates
of prediction error (see below) (Varma and Simon, 2006).

Several authors have developed methods to identify optimal sets of genes which together provide good discrimination
of the classes (Bo and Jonassen, 2002; Deutsch, 2003; Kim et al., 2002; Ooi and Tan, 2003). These algorithms are
generally very computationally intensive. Unfortunately, it is not clear whether the increased computational effort of
these methods is warranted. In some cases, the claims made do not appear to be based on properly cross-validated
calculations; all of the data being used to select the genes and cross-validation used only for fitting the parameters of the
model. Thorough studies comparing the performance of such methods to the simpler univariate methods are needed.

Some investigators have used linear combinations of gene expression values as predictors (Khan et al., 2001; West
et al., 2001). Principal components are the orthogonal linear combinations of the genes showing the greatest variability
among the cases. Using principal components as predictive features provides a vast reduction in the dimension of
the expression data, but has two serious limitations. One is that the principal components are not necessarily good
predictors. The measure of variability used in defining the principal components does not utilize the class membership
information; it is total variability. Hence the genes whose expressions have substantial within-class variance but small
differences in mean expression among classes may be included in the first few principal components. The second
problem is that measuring the principal components requires measuring expression of all the genes. This makes it more
difficult to translate the classifier to an alternative assay that does not provide a parallel read-out of all genes as was done
in the OncoType Dx classifier (Paik et al., 2004). The method of gene shaving attempts to provide linear combinations
with properties similar to the principal components that does not require measuring all of the genes (Hastie et al.,
2000). Partial least-squares (Nguyen and Rocke, 2002) attempts to select linear combinations in a manner that utilizes
class membership information. This may provide more accurate classifiers but does not reduce the number of genes
whose expression needs to be measured. The method of supervised principal components (Bair and Tibshirani, 2004)
utilizes principal components of genes selected for their univariate correlations with outcome. This has the advantage of
reducing the number of genes whose expressions need to be measured in the future and also tends to avoid over-fitting
the training set data.

3.2. Prediction model

Many algorithms have been used effectively with DNA microarray data for class prediction. Dudoit et al. (2002) and
Dudoit and Fridlyand (2003) compared a wide range of algorithms using publicly available data sets. The algorithms
included nearest neighbor classification, linear and quadratic discriminant analysis, diagonal linear and quadratic
discriminant analysis, support vector machines (SVM), classification trees, and random forest classifiers. Bagging and
boosting the classifiers was also evaluated. For two-class problems, a linear discriminant is a function

l(x) =
∑
i∈F

wixi , (1)

where xi denotes the log-ratio or log-signal for the ith gene, wi is the weight given to that gene, and the summation
is over the set F of features (genes) selected for inclusion in the class predictor. For a two-class problem, there is a
threshold value d, and a sample with expression profile defined by a vector x of values is predicted to be in class 1 or
class 2 depending on whether l(x) as computed from Eq. (1) is less than or greater than d, respectively.
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Several kinds of class predictors used in the literature have the form shown in (1). They differ with regard to how the
weights are determined. The oldest form of linear discriminant is Fisher’s linear discriminant. The weights are selected
so that the mean value of l(x) in class 1 is maximally different from the mean value of l(x) in class 2. The squared
difference in means divided by the pooled estimate of the within-class variance of l(x) was the specific measure used
by Fisher. To compute these weights, one must estimate the correlation between all pairs of genes that were selected in
the feature selection step. The study by Dudoit et al. indicated that Fisher linear discriminant analysis did not perform
well unless the number of selected genes was small relative to the number of samples; otherwise there are too many
correlations to estimate and the method tends to be unstable and over-fit the data.

Diagonal linear discriminant analysis is a special case of Fisher linear discriminant analysis in which the correlation
among genes is ignored. By ignoring such correlations, one avoids having to estimate many parameters, and obtains
a method which performs better when the number of samples is small. The weight for the ith gene is proportional
to the difference in sample means for the ith gene divided by the pooled within-class variance estimate for the ith
gene (Simon et al., 2003). Golub’s weighted voting method (Golub et al., 1999) and the compound covariate predictor
of Radmacher et al. (2002) are similar to diagonal linear discriminant analysis and tend to perform very well when
the number of samples is small. They compute the weights based on the univariate prediction strength of individual
genes and ignore correlations among the genes. For the compound covariate classifier, the weight for the ith gene
is proportional to the pooled variance t statistic for comparing expression of the ith gene between the two classes
(Simon et al., 2003).

Linear kernel SVM use a predictor of the form of Eq. (1). The weights are determined by maximizing the distance
from the closest expression vectors to the hyperplane separating the two classes, instead of a least-squares criterion as
in linear discriminant analysis (Ramaswamy et al., 2001). Linear kernel SVM are similar to ridge regression classifiers.
Although there are more complex forms of SVM, they appear to be inferior to linear kernel SVMs for class prediction
with large numbers of genes (Ben-Dor et al., 2000). When the number of genes is greater than the number of cases, if
the data are not inconsistent, then it is always possible to find a linear function that perfectly separates the classes in the
training data.Although this does not directly imply that non-linear classifiers might not have smaller generalization error,
it suggests that most data sets are not large enough to effectively utilize non-linear classifiers with many parameters.

Khan et al. (2001) reported accurate class prediction among small, round blue cell tumors of childhood using an
artificial neural network. The inputs to the ANN were the first 10 principal components of the genes; that is, the
l0 orthogonal linear combinations of the genes that accounted for most of the variability in gene expression among
samples. Their neural network used a linear transfer function with no hidden layer and hence it was a linear perceptron
classifier of the form of Eq. (1). Most true artificial neural networks have a hidden layer of nodes, use a non-linear
transfer function and individual features as inputs. Such a “real” neural network may not perform as well as the principal
component perceptron model of Khan et al. because of the number of parameters to be estimated would be too large
for the available number of samples.

Nearest neighbor classification is based on a feature set F of genes selected to be informative for discriminating the
classes and a distance function d(x, y) which measures the distance between the expression profiles x and y of two
samples. The distance function utilizes only the genes in the selected set of features F . Usually, Euclidean distance is
the metric used. To classify a sample with expression profile y, compute d(x, y) for each sample x in the training set.
The predicted class of y is the class of the sample in the training set which is closest to y with regard to the distance
function. A variant of nearest neighbor classification is k-nearest neighbor classification. For example with 3-nearest
neighbor classification, you find the three samples in the training set which are closest to the sample y. The class
which is most represented among these three samples is the predicted class for y. For microarray data classification,
k-nearest neighbor classification is generally used with k equal to one or three because the number of cases is usually
limited.

Nearest centroid classification is a variant of nearest neighbor classification. The centroid of the gene expression
vectors for cases within a class is the vector containing the mean expression of each component gene for the cases
in the class. With nearest centroid classification, a new case is classified into the class whose centroid in the training
set it is closest to using the genes selected based on the training data. The method of shrunken centroids (Tibshirani
et al., 2002) is similar to nearest centroid classification but incorporates automatic gene selection by shrinking the class
centroids toward the overall mean.

In the studies of Dudoit et al. (2002) and Dudoit and Fridlyand (2003), the simplest methods, diagonal linear
discriminant analysis and nearest neighbor classification, generally performed about as well as more complex methods.
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Ben-Dor et al. (2000) also compared several methods on several public data sets and found that nearest neighbor
classification generally performed as well or better than more complex methods.

3.3. Estimates of predictive accuracy based on developmental studies

Developmental studies are analogous to phase II clinical trials. They should include an indication of whether the
genomic classifier is promising and worthy of phase III evaluation. There are special problems in evaluating whether
classifiers based on high-dimensional genomic or proteomic assays are promising, however. The difficulty derives from
the fact that the number of candidate features available for use in the classifier is much larger than the number of cases
available for analysis. In such situations, it is always possible to find classifiers that accurately classify the data on which
they were developed even if there is no relationship between expression of any of the genes and outcome (Radmacher
et al., 2002). Consequently, even in developmental studies, some kind of validation on data not used for developing
the model is necessary. This “internal validation” is usually accomplished either by splitting the data into two portions,
one used for training the model and the other for testing the model, or some form of cross-validation based on repeated
model development and testing on random data partitions. This internal validation should not, however, be confused
with the kind of external validation of the classifier utility in a setting simulating broad clinical application.

The most straightforward method of estimating the prediction accuracy is the split-sample method of partitioning
the set of samples into a training set and a test set. Rosenwald et al. (2002) used this approach successfully in their
international study of prognostic prediction for large B cell lymphoma. They used two-thirds of their samples as a
training set. Multiple kinds of predictors were studied on the training set. When the collaborators of that study agreed
on a single fully specified prediction model, they accessed the test set for the first time. On the test set there was no
adjustment of the model or fitting of parameters. They merely used the samples in the test set to evaluate the predictions
of the model that was completely specified using only the training data. In addition to estimating the overall error
rate on the test set, one can also estimate other important operating characteristics of the test such as sensitivity and
specificity.

The split-sample method is often used with so few samples in the test set, however, that the validation is almost
meaningless. One can evaluate the adequacy of the size of the test set by computing the statistical significance of the
classification error rate on the test set or by computing a confidence interval for the test set error rate. Since the test set
is separate from the training set, the number of errors on the test set has a binomial distribution.

Michiels et al. (2005) suggested that multiple training–test partitions be used, rather than just one. The split-sample
approach is mostly useful, however, when one does not have a well-defined algorithm for developing the classifier.
When there is a single training set–test set partition, one can perform numerous unplanned analyses on the training set
to develop a classifier and then test that classifier on the test set. With multiple training–test partitions, however, that
type of flexible approach to model development cannot be used. If one has an algorithm for classifier development, it
is generally better to use one of the cross-validation or bootstrap re-sampling approaches to estimating error rate (see
below) because the split-sample approach does not provide as efficient a use of the available data (Molinaro et al.,
2005).

Cross-validation is an alternative to the split-sample method of estimating prediction accuracy (Radmacher et al.,
2002). Molinaro et al. (2005) describe and evaluate many variants of cross-validation and bootstrap re-sampling for
classification problems where the number of candidate predictors vastly exceeds the number of cases. Molinaro et
al. found that for high-dimensional data with small sample sizes, leave-one-out cross-validation and 10-fold cross-
validation performed very effectively. Split-sample validation often was quite biased in overestimating the prediction
error. Results for the 0.632+ bootstrap varied depending on the stability of the classifier and the signal strength of the
data. Previous evaluations of re-sampling methods for estimating prediction error failed to include variable selection
and with high-dimensional data variable selection influenced performance significantly. The cross-validated prediction
error is an estimate of the prediction error associated with application of the algorithm for model building to the entire
data set.

A commonly used invalid estimate is called the re-substitution estimate. You use all the samples to develop a model.
Then you predict the class of each sample using that model. The predicted class labels are compared to the true class
labels and the errors are totaled. It is well known that the re-substitution estimate of error is biased for small data sets
and the simulation of Simon et al. (2003) confirmed that, with an astounding 98.2% of the simulated data sets resulting
in zero misclassifications even when no true underlying difference existed between the two groups. Simon et al. (2003)
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also showed that cross-validating the prediction rule after selection of differentially expressed genes from the full data
set does little to correct the bias of the re-substitution estimator: 90.2% of simulated data sets with no true relationship
between expression data and class still result in zero misclassifications. When feature selection was also re-done in each
to cross-validated training set, appropriate estimates of misclassification error were obtained; the median estimated
misclassification rate was approximately 50%.

The simulation results underscore the importance of cross-validating all steps of predictor construction in estimating
the error rate. It can also be useful to compute the statistical significance of the cross-validated estimate of classification
error. This determines the probability of obtaining a cross-validated classification error as small as actually achieved
if there were no relationship between the expression data and class identifiers. A flexible method for computing this
statistical significance was described by Radmacher et al. (2002). It involves randomly permuting the class identifiers
among the patients and then re-calculating the cross-validated classification error for the permuted data. This is done
a large number of times to generate the null distribution of the cross-validated prediction error. If the value of the
cross-validated error obtained for the real data lies far enough in the tail of this null distribution, then the results are
statistically significant. This method of computing statistical significance of cross-validated error rate for a wide variety
of classifier functions is implemented in the BRB-ArrayTools software (Simon and Lam, 2005). Statistical significance,
however, does not imply that the prediction accuracy is sufficient for the test to have clinical utility.

Even if a classifier is developed for a set of patients sufficiently homogeneous and uniformly treated to be thera-
peutically relevant, it may be important to evaluate whether the classifier predicts more accurately than do standard
prognostic factors or adds predictive accuracy to that provided by standard prognostic factors. For example, Rosenwald
et al. (2002) developed a classifier of outcome for patients with advanced diffuse large B cell lymphoma receiving
CHOP chemotherapy. The International Prognostic Index (IPI) is easily measured and prognostically important for
such patients, however, and so it was important for Rosenwald et al. to address whether their classifier provided added
value. The most effective way of addressing whether a classifier adds predictive accuracy to a standard classification
system is to examine outcome for the new system within the levels of the standard system.

3.4. Sample-size planning for developmental studies

Sample-size planning for development of classifiers when the number of candidate predictors (p) is much larger
than the number of cases (n) has only recently been adequately developed. Most classical methods of sample-size
planning for developing classifiers require non-singularity of the sample covariance matrix of the covariates and are not
applicable to the p?n setting. Although many classifiers for microarray studies retain fewer than n covariates, proper
sample-size planning method should account for variability in the selection of covariates, not just for variability in the
weights placed on the selected covariates.

Mukherjee et al. (2003) developed a sample-size planning method for microarray classifier development based on
learning curve estimation methods, but it requires extensive previous data from a study that attempted to distinguish
the same classes using the same expression profiles. Fu et al. (2005) developed a sequential method for determining
when additional samples are no longer based on sequential classifier development after each additional sample is taken.
Dobbin and Simon (2007) have developed a de-nano approach to sample size planning for classifier development.

Most sample-size planning methods developed for microarray studies have been for the related objective of identifying
genes that are differentially expressed among pre-defined classes. This has been termed class comparison, and it is
a component of the class prediction problem considered here. Dobbin and Simon (2005) showed that the following
approximation can be used for estimating the total number of samples needed for determining whether a given gene is
differentially expressed between two equally represented classes:

n = 4(tn−2,�/2 + tn−2,�)2/(�/�)2. (2)

The quantities tn−2,�/2 and tn−2,� denote percentiles of the t distribution with n−2 degrees of freedom, � is the nominal
threshold significance level for declaring a gene differentially expressed based on a gene-by-gene analysis, 1 −� is the
power for identifying a gene differentially expressed when the class means differ by � in logarithm of expression and
� is the within class standard deviation of log expression for the gene. Since n occurs on both sides of the equation
in (2), the expression must be solved iteratively. For sufficiently large n, the t percentiles can be replaced by normal
percentiles.
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The probability of incorrect classification based on a single gene whose log expression is normally distributed with
common standard deviation � is �(�/2�) where � is the difference in mean log expression between the two classes and
� denotes the standard normal distribution function. Consequently, the discrimination power of an individual gene is
determined by the �/� value for that gene. A gene with a �/� value of 2 provides about an 84% probability of correct
classification when used alone. Genes with smaller �/� effect sizes are less valuable for classification of individual
patients, even if the research study is large enough to identify them as differentially expressed among the classes.

In the case where all differentially expressed genes are regarded as differentially expressed by the same amount �,
Dobbin and Simon (2005) demonstrated the approximate relationship:

FDR ≈
{

1 +
(

1 − �

�

) (
�

1 − �

)}−1

, (3)

where FDR denotes the false discovery rate and � denotes the proportion of the genes that are differentially expressed.
The false discovery rate is the proportion of the genes claimed differentially expressed which are false positive findings.
Although it is unrealistic to expect that all genes that are differentially expressed have the same mean difference between
classes, analysis of (3) is of interest for appreciating the relationships among the parameters. The false discovery rate
depends strongly on �/�. If � is large, then a larger value of � will suffice to keep the FDR small. In microarray studies,
� is typically in the range of 0.005–0.05, with smaller values being more common. With ��0.005 and �=0.05, a value
of � = 0.001 is sufficient to limit the FDR to be no greater than 0.17. Using expression (2) with � = 0.001, � = 0.05,
and �/� = 2 gives n = 29.1 total cases, or 15 cases for each class. The sample size increases substantially if genes
with an effect size of less than 2 are of interest, but as noted above, such genes are of less value for classification of
individual patients.

Dobbin and Simon (2005) also show that for finding genes whose expressions are correlated with a time-to-event
variable, an approximation for the number of events required is approximately:

d = (z�/2 + z�)2

(� ln(h))2 , (4)

where � denotes the standard deviation of log expression over the set of samples and h denotes the hazard ratio associated
with a one-unit change in log intensity. Using expression profiles to predict risk groups for a time-to-event endpoint
may require much larger sample sizes that for class prediction, particularly when the event rate is small.

4. Design of validation studies

Although there is a large literature on prognostic markers, few such factors are used in clinical practice. To a large
extent this is due to a lack of adequate validation studies which demonstrate the therapeutic relevance and robustness of
pre-specified biomarker classifiers. Prognostic markers are unlikely to be used unless they are therapeutically relevant.
Most developmental studies, unless they are based on patients treated in a single clinical trial, are not based on a
cohort medically coherent enough to establish therapeutic relevance. Developmental studies also rarely establish the
robustness of the classifier and of the underlying assays under conditions that simulate those likely to be found in
real-world patient management.

The objective of external validation is to determine whether use of a completely specified diagnostic classifier for
therapeutic decision making in a defined clinical context results in patient benefit. Patient benefit may represent better
efficacy, reduced incidence of adverse events, better convenience or lower costs. The objective is not to repeat the
developmental study and see if the same genes are prognostic or if the same classifier is obtained.

Biomarkers are used for very different purposes and validation should relate to fitness for a defined purpose. It is
not productive to require validation in some more absolute biological sense for diseases whose molecular pathogenesis
is not fully understood. We focus here on the design of validation studies to establish clinical benefit in assisting with
treatment selection. For example, the Oncotype-Dx risk score was developed to measure prognosis for node negative,
estrogen receptor (ER) positive patients with primary breast cancer receiving Tamoxifen therapy after surgical resection
of the primary lesion (Paik et al., 2004). The validation issue is whether use of this risk score results in clinical benefit.
The components of expression signature classifiers need not be valid biomarkers in the sense of the Food and Drug
Administration (FDA, 2005). Those criteria require that the role of the biomarker be mechanistically understood and



Author's personal copy

R. Simon / Journal of Statistical Planning and Inference 138 (2008) 308– 320 315

Fig. 1. Randomized clinical trial for evaluating whether use of a biomarker-based classifier for treatment selection results in improved clinical
outcome. All patients with conventional diagnosis are randomized between biomarker-based treatment (M-rx) or standard of care-based treatment
(SOC-rx). This design is often very inefficient.

accepted as markers of disease activity. Such criteria are relevant for biomarkers used as surrogate endpoints but not
for the components of expression signatures used for tailoring treatments. It is, of course, desirable to understand the
mechanistic relationship of the components of an expression signature, but the classifier can be validated without such
understanding.

An independent validation study could be a prospective clinical trial in which patients are randomized to treatment
assignment without use of the classifier versus treatment assignment with the aid of the classifier. This design requires
that the classifier be determined only in half of the patients. Often, however, this design will be inefficient and require a
huge sample size because many or most of the patients will receive the same treatment either way they are randomized.
For example, consider women with lymph node negative, ER positive breast cancers. About one-third of such patients
might be expected to be classified as low risk for recurrence based on the Oncotype-DX expression signature based risk
score (Paik et al., 2004). If one wants to test the strategy of withholding cytotoxic chemotherapy (systemic treatment
with Tamoxifen alone) from the subset of patients classified as low risk, it would be inefficient to randomize all of
the node negative ER positive patients. If one randomizes all the patients and only performs the assay on the half
randomized to have classifier based therapy, then the two randomization groups must be compared overall, although
two-thirds of the patients receive the same treatment in both arms. Designs related to that shown in Fig. 1 have been
discussed by Sargent et al. (2005).

A more efficient alternative is to perform the assay up front for all patients, and then randomize only those classified
as low risk. Those patients would be randomized to either receive Tamoxifen alone or Tamoxifen plus cytotoxic
chemotherapy. Randomizing only the patients classified as low risk is much more efficient than randomizing all of the
patients.

One might argue that treatment determination using a genomic classifier for women with stage I ER positive breast
cancer should not be compared to the strategy of giving all such women Tamoxifen plus chemotherapy, because there are
practice guidelines available based on tumor size and age that withhold chemotherapy from some patients. Nevertheless,
it would still be very inefficient to randomize women to genomic classifier determined therapy or non-genomic practice
guidelines determined therapy in which the genomic classifier is measured only on the women randomized to its use.
Most of the women will probably receive the same treatment whichever arm they are randomized to. It is much more
efficient to perform the assay for measuring the genomic classifier, and then randomize only the women for whom
the two treatment strategies differ as indicated in Fig. 2. With such a design the magnitude of the difference between
randomization groups is not diluted by patients receiving the same treatment in each arm, but it may still require many
patients to be screened in order to obtain enough patients to randomize whose treatment strategies differ.

The null hypothesis for the design of Fig. 2 is that the marker-based treatment selection strategy is equivalent to the
standard care treatment selection strategy. In the breast cancer example described above, the marker-based treatment
selection strategy called for withholding systemic therapy other than Tamoxifen for patients predicted to be at low
risk of recurrence based on the classifier. The standard of care treatment might incorporate decision making based
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Fig. 2. Improved clinical trial design for evaluating whether use of a biomarker-based classifier for treatment selection results in improved clinical
outcome. The biomarker classifier-based treatment (M-rx) and standard of care-based treatment (SOC-rx) are determined before randomization and
patients for whom the two treatment strategies agree are not randomized. This design is often much more efficient than that shown in Fig. 1.

on established predictive markers. For example, the standard of care might be include treatment with Herceptin for
patients whose tumors expressed the Her2/neu receptor. Or the standard of care strategy might involve withholding
systemic therapy other than Tamoxifen if the tumor size is below a specified threshold. The design of Fig. 2 requires
that the standard of care treatment and the classifier-based treatment for each eligible patient be determined before
randomization and only those patients for whom the two treatments differ are randomized.

Phase III clinical trials generally attempt to utilize an intervention in a manner that it might be used if adopted in
broad clinical practice. For evaluating a diagnostic classifier, a multi-center clinical trial provides the challenges of
distributed tissue handling and real-time assay performance that would be met in general use. The assays might be
performed in multiple laboratories and cannot be batched in time with a single set of reagents as might be done in a
retrospective study. Consequently, the prospective clinical trial is the gold standard for external validation of a genomic
classifier.

Validation based on a new prospective clinical trial will require a long follow-up time for low risk patients. In such
circumstances it can be useful to conduct a prospectively planned validation using patients treated in a previously
conducted prospective multi-center clinical trial if archived tumor specimens are available for the vast majority of
patients. The validation study should be prospectively planned with at least as much detail and rigor as for prospective
accrual of new patients. Although assaying procedures probably cannot be distributed over time in the same way as
for newly accrued patients, assay reproducibility studies should be conducted to demonstrate that the assay has been
standardized and quality controlled sufficiently so that such sources of variation are negligible. A written protocol
should be developed to ensure that the study is prospectively planned to evaluate the clinical benefit of a completely
specified genomic classifier for a defined therapeutic decision in a defined population in a hypothesis testing manner
as it would for a prospective clinical trial.

The study of Paik et al. (2004) of the OncoType Dx classifier for women with node negative ER positive breast cancer
is an example of careful prospective planning of an independent validation study using archived specimens. Their study
was based on the observation that although randomizing only the patients classified as low risk is more efficient than
randomizing all of the patients, it still would require many patients. It is a therapeutic equivalence trial in the sense
that finding no difference in outcome changes clinical practice; consequently it is important to be able to detect small
differences. Since the expected recurrence rate is so low, it would take many patients to detect a difference between
the treatment arms. But if the recurrence rate is as low as predicted by the classifier, then the benefit of chemotherapy
is necessarily extremely small. Consequently, an alternative design for external validation is a single arm study in
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which the patients classified as low risk are treated with Tamoxifen alone. If, with long follow-up, these patients have a
very low recurrence rate, then the classifier is considered validated for providing clinical benefit because it enabled the
identification of patients whose prognosis was so good on Tamoxifen monotherapy that they could be spared the toxicity,
inconvenience and expense of chemotherapy. This was the approach used by Paik et al. (2004) for validation of the
OncoType Dx classifier for patients with node negative, ER positive breast cancer. The genes that appeared prognostic
were initially identified based on published microarray studies. A classifier based on measuring expression of those
genes using a different assay that could be performed on the formalin fixed parafin embedded diagnostic biopsy was
developed using the archived tissue from studies of the National Surgical Adjuvant Breast and Bowel Project (NSABP)
cooperative cancer group. The completely pre-specified classifier was then tested on 668 patients from NSABP B-14
who received Tamoxifen alone as systemic therapy. Fifty one percent of the assayed patients fell in the low risk group.
They had a distant recurrence rate at 10 years of 6.8% (95% confidence interval of 4.0–9.6). Much higher rates of
distant recurrence were seen in the intermediate and high risk groups of the classifier (14.3% and 30.5%, respectively).

5. Development of genomic classifiers for experimental drugs

In proposing the introduction of a classifier for improving the utilization of existing therapy, the emphasis should be
on validation of the clinical benefit of using the classifier compared to not using it. Classifiers may also be developed,
however, to restrict the type of patient/disease in which a new experimental therapy will be evaluated. This is usually
only the case for classifiers based on the known molecular target of the drug when the biology is very clear. In this case,
the focus would be on evaluating the drug in classifier positive patients and not validating the classifier itself. Simon and
Maitournam (2004) demonstrated that use of a genomic classifier for focusing a clinical trial in this manner can result in
a dramatic reduction in required sample size, depending on the sensitivity and specificity of the classifier for identifying
such patients. Not only can such targeting provide a huge improvement in efficiency in phase III development, it also
provides an increased therapeutic ratio of benefit to toxicity and results in a greater proportion of treated patients who
benefit.

Simon and Maitournam consider use of the targeted design shown in Fig. 3. During pre-clinical and phase I/II
clinical development one identifies a fully specified classifier of which patients have a high probability of responding
to the experimental drug. That classifier is then used to select patients for phase III trial. This is a form of enrichment
design. Table 1 shows the number of events required for 80% statistical power in the design of Fig. 3 for comparing
exponential survival times if the treatment results in a halving of the hazard in the patients selected for study using the
classifier. The number of events is compared to the number of events required in a standard clinical trial if the classifier
is not used to select patients for randomization. The table assumes that the treatment is not effective for the classifier

Fig. 3. Targeted clinical trial design for evaluating a new experimental therapy. A biomarker classifier is developed for identifying those patients
most likely to respond to the new treatment (E). Only those patients are randomized to E versus the control treatment. The patients predicted less
likely to respond (marker negative) are off study. The targeted design is most useful in cases where the biomarker classifier has a strong biological
rationale for identifying responsive patients and where it may not be ethically advisable to expose marker negative patients to the new treatment.



Author's personal copy

318 R. Simon / Journal of Statistical Planning and Inference 138 (2008) 308– 320

Table 1
Second column contains the approximate number of events required for 80% power with 5% two-sided log-rank test for comparing arms of targeted
design shown in Fig. 3

Treatment hazard ratio Number of events for Number of events for traditional
for marker positive targeted design design
patients

Percent of patients marker positive

20% 33% 50%

0.5 74 2040 720 316
0.67 200 5200 1878 820

Only marker positive patients are randomized. Treatment hazard ratio for marker positive patients is shown in first column. Time-to-event distributions
are exponential and all patients are followed to failure. Last three columns show the approximate number of events required for comparing the arms
of a traditional design in which unclassified marker positive and marker negative patients are randomized. Treatment hazard ratio for marker negative
patients is assumed to be 1.

Fig. 4. Stratified analysis design for evaluating a new experimental treatment (E) relative to a control (C). The status of a biomarker-based classifier
of the likelihood of responding to E is utilized in a prospectively specified analysis plan. The biomarker classifier is not just used for stratifying the
randomization. Alternative analysis plans are described in the text.

negative patients. More extensive results on relative efficiency of the targeted and untargeted designs are described by
Maitournam and Simon (2005) and Simon and Maitournam (2004) and web-based sample size calculation programs
are available at http://linus.nci.nih.gov/brb/samplesize/.

Developing a genomic classifier of which patients are likely to benefit for targeting phase III trials may require larger
phase II studies. This depends on the type of drug being developed. For example, if the drug is an inhibitor of a kinase
mutated in cancer, then there is a natural diagnostic and no genome-wide screening is needed. For many molecularly
targeted drugs, however, the appropriate assay for selecting patients is not known and development of a classifier based
on comparing expression profiles for phase II responders versus phase II non-responders may be the best approach.
In such instances, one may not have sufficient confidence in the genomic classifier developed in phase II to use it for
excluding patients in phase III trials as in Fig. 3. It may be better in this case to accept all conventionally eligible
patients, and use the classifier in the pre-defined analysis plan.

Fig. 4 shows the marker by treatment interaction design discussed by Sargent et al. (2005) and by Pusztai and Hess
(2004). Both marker positive and marker negative patients are randomized to the experimental treatment or control.
The analysis plan either calls for separate evaluation of the treatment difference in the two marker strata or for testing
the hypothesis that the treatment effect is the same in both marker strata. When this design is used for development of
an experimental drug, an appropriate analysis plan might be to utilize a preliminary test of interaction; if the interaction
is not significant at a pre-specified level, then the experimental treatment is compared to the control overall. If the
interaction is significant, then the treatment is compared to the control within the two strata determined by the marker.
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The sample-size planning for such a trial and determination of the appropriate significance level for the preliminary
interaction test require further study.

Freidlin and Simon (2005) proposed an alternative analysis plan for the design of Fig. 4. They suggested that the
overall null hypothesis for all randomized patients is tested at the 0.04 significance level. A portion, e.g. 0.01, of the
usual 5% false positive rate is reserved for testing the new treatment in the subset predicted by the classifier to be
responsive. The analysis starts with a test of the overall null hypothesis, without a preliminary test of interaction. If the
overall null hypothesis is rejected, then one concludes that the treatment is effective for the randomized population as
a whole and that the classifier is not needed. If the overall null hypothesis is not rejected at the 0.04 level, then a single
subset analysis is conducted; comparing the experimental treatment to the control in the subset of patients predicted
by the classifier as being most likely to be responsive to the new treatment. If the null hypothesis is rejected, then
the treatment is considered effective for the classifier determined subset. This analysis strategy provides sponsors an
incentive for developing genomic classifiers for targeting therapy in a manner that does not unduly deprive them of
the possibility of broad labeling indications when justified by the data. Although this analysis strategy does not ensure
that the statistical significance of an overall treatment effect is not driven by treatment benefit for the classifier positive
subset, the design provides data for evaluating treatment effect in classifier negative patients.

6. Conclusions

Physicians need improved tools for selecting treatments for individual patients. The genomic technologies available
today are sufficient to develop such tools. There is not broad understanding of the steps needed to translate research
findings of correlations between gene expression and prognosis into robust diagnostics validated to be of clinical utility.
This paper has attempted to identify some of the major steps needed for such translation.
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